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Recently, it has been shown that visual perception can be radically
altered by signals of other modalities. For example, when a single
£ash is accompanied by multiple auditory beeps, it is often per-
ceived as multiple £ashes. This e¡ect is known as the sound-
induced £ash illusion. In order to investigate the principles under-
lying this illusion, we developed an ideal observer (derived using
Bayes’ rule), and compared human judgements with those
of the ideal observer for this task. The human observer’s

performance was highly consistent with that of the ideal observer
in all conditions ranging fromno interaction, to partial integration,
to complete integration, suggesting that the rule used by the
nervous system to decide when and how to combine auditory and
visual signals is statistically optimal. Our ¢ndings show that the
sound-induced £ash illusion is an epiphenomenon of this general,
statistically optimal strategy. NeuroReport 16:1923^1927 �c 2005
LippincottWilliams &Wilkins.
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Introduction
Situations in which an individual is exposed to sensory
signals in only one modality are the exception rather than
the rule. At any given instant, the brain is typically engaged
in processing sensory stimuli from two or more modalities,
and in order to achieve a coherent and ecologically valid
perception of the physical world, it must determine which
of these temporally coincident sensory signals are caused
by the same physical source/event and thus should be
integrated into a single percept. Spatial coincidence of the
stimuli is not a very strong or exclusive determinant of
cross-modal binding: information from two modalities may
get seamlessly bound together, despite large spatial incon-
sistencies (e.g. ventriloquism effect), while spatially con-
cordant stimuli may be perceived as separate entities (e.g.
someone speaking behind a screen does not lead to the
binding of the voice with the screen). This is not surprising,
considering the relatively poor spatial resolution of audi-
tory, olfactory, and somatosensory modalities. The degree of
consistency between the information conveyed by two
sensory signals, on the other hand, is clearly an important
factor in determining whether the cross-modal signals are to
be integrated or segregated.

Previous models of cue combination [1–9] have all
focused exclusively on conditions in which the signals of
the different modalities get completely integrated (or appear
so because of the employed paradigms that force partici-
pants to report only one percept, and thus not revealing any
potential conflict in percepts). Therefore, the previous

models are unable to account for the vast number of
situations in which the signals do not get integrated or only
partially integrate.

The sound-induced flash illusion [10,11] is a psychophy-
sical paradigm in which both integration and segregation of
auditory–visual signals occur depending on the stimulus
condition. When one flash is accompanied by one beep
(i.e. when there is no discrepancy between the signals), the
single flash and single beep appear to originate from the
same source, and are completely fused. When one flash is
accompanied by four beeps (i.e. when the discrepancy is
large), however, most often they are perceived as emanating
from two separate events, and the two signals are
segregated, that is, a single flash and four beeps are
perceived. If the single flash is accompanied by two beeps
(i.e. when the discrepancy is small), the single flash is often
perceived as two flashes and on these illusion trials, the
flashes and beeps are perceived as having originated from
the same source, that is, integration occurs in a large fraction
of trials. When a single flash is accompanied by three beeps,
on a fraction of trials the single flash is perceived as two
flashes while the three beeps are perceived as veridical.
These trials would exemplify conditions of partial integra-
tion in which the visual and/or auditory percepts are
shifted towards each other, but do not converge.

Therefore, the sound-induced flash illusion offers a
paradigm encompassing the entire spectrum of bisensory
situations. As signals are not always completely integrated,
previous models of cross-modal integration cannot account
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for these effects. Therefore, we developed a new model in
order to be able to account for situations of segregation and
partial integration, as well as complete integration. The
model is an ideal observer and in contrast to previous
models of cue combination, it does not assume one source
for all the sensory signals (which would enforce integra-
tion); instead, it assumes one source for the signal in each
modality. The sources, however, are not taken to be
statistically independent, and therefore, the model allows
inferences about both cases in which separate entities have
caused the sensory signals, and cases in which sensory
signals are caused by one source. The model uses Bayes’
rule to make inferences about the causes of the various
sensory signals.

We presented observers with varying combinations of
beeps and flashes, and asked them to report the perceived
number of flashes and beeps in each trial. We then
compared the human judgements with those of the ideal
observer.

Materials and methods
Stimuli
The visual stimulus consisted of a uniform white disk
subtending 1.51 of the visual field at 121 eccentricity below
the fixation point (Fig. 1a), flashed for 10 ms on a black
computer screen 1–4 times. The auditory stimulus was a 10-
ms-long beep with 80 dB sound pressure level and 3.5 kHz
frequency, also presented 0–4 times. A factorial design was
used in which all combinations of 0–4 flashes and 0–4 beeps
(except for the no flash–no beep combination) were
presented, leading to a total of 24 conditions. The stimulus
onset asynchronies (SOAs) of flashes and beeps were 70 and
58 ms, respectively (Fig. 1b). These specific SOAs were
chosen because of certain constraints (e.g. frame rate,
obtaining a strong illusion in the illusion conditions, and
the smallest sound SOA, which consistently is above flutter
fusion threshold). The behavioral data are fairly robust to
the exact visual and auditory SOAs. The relative timing of
the flashes and beeps was set such that the centers of the
flash and beep sequences were synchronous in order to
maximize the time overlap between the two stimuli. Sound
was presented from two speakers placed adjacent to the two
sides of the computer monitor, at the height in which the
visual stimulus was presented, thus, localizing at the same
location as the visual stimulus.

Procedure
Ten naive observers participated in the experiment. Ob-
servers sat at a viewing distance of 57 cm from the computer
screen and speakers. Throughout the trials, there was a
constant fixation point at the center of the screen. The
observer’s task was to judge both the number of flashes seen
and the number of beeps heard after each trial (these reports
provide P(ZA,ZV|A,V) as described below). The experiment
consisted of 20 trials of each condition, amounting to a total
of 480 trials, ordered randomly. A brief rest interval was
given after every third trial of the experiment.

The ideal observer model
We assume that the auditory and visual signals are
statistically independent given the auditory and visual causes
(see Fig. 2). This is a common assumption, motivated by the
hypothesis that the noise processes that corrupt the auditory

and visual signals are independent. This conditional inde-
pendence means that if the causes are known, knowledge
about V provides no information about A, and vice versa, as
the noises corrupting the two signals are independent. In the
meantime, if the causes are not known, knowledge of V
provides information about A, and vice versa [12].

The information about the likelihood of sensory signal A
occurring, given an auditory cause ZA, is captured by the
probability distribution P(A|ZA). Similarly, P(V|ZV) repre-
sents the likelihood of sensory signal V given a source ZV

in the physical world. The priors P(ZA,ZV) denote the
perceptual knowledge of the observer about the auditory–
visual events in the environment. In addition to the
observer’s experience, the priors may also reflect hard-
wired biases imposed by the physiology and anatomy of the
brain (e.g. the pattern of interconnectivity between the
sensory areas [13,14]), as well as biases imposed by the task,
the observer’s state, etc.

The graph in Fig. 2 [15] illustrates the two key features of
the model. First, that there are two sources, ZA and ZV, for
the two sensory signals A and V. This allows inference in
both cases in which the signals A and V are caused by the
same source and cases in which they are caused by two
distinct sources. That is, in contrast to the previous models,
this model does not a priori assume that the signals have to
be integrated. Second, in this model, ZV influences A only
through its effect on ZA, and likewise for ZA and V. This
corresponds to the assumption of independent likelihood
functions, P(A,V|ZA,ZV)¼P(A|ZA)P(V|ZV). This is a plau-
sible assumption motivated by the fact that either the two
signals are caused by two different events in which case A
would be independent of ZV (and likewise for V and ZA), or
they are caused by one event, in which case the dependence
of A on ZV can be captured by its dependence on ZA.

Given the visual and auditory signals A and V, an ideal
observer would try to make the best possible estimate of the
physical sources ZA and ZV, based on the knowledge
P(A|ZA), P(V|ZV), and P(ZA,ZV). These estimates are based
on the posterior probabilities P(ZA,ZV|A,V), which can be
calculated using Bayes’ rule, and simplified by the assump-
tions represented by the model structure (Fig. 2), resulting
in the following inference rule:

PðZA;ZV jA;VÞ ¼
PðAjZAÞ PðVjZVÞ PðZA;ZVÞ

PðA;VÞ
: ð1Þ

This inference rule simply states that the posterior prob-
ability of events ZA and ZV is the normalized product of the
single-modality likelihoods and joint priors. In order to
simplify calculations, we assume that P(A,V) has a uniform
distribution. This, in turn, implies that P(A) and P(V) also
have uniform distributions. Given a uniform P(A), the
auditory likelihood term is computed as follows

PðAjZAÞ ¼
PðZAjAÞPðAÞP
A PðZAjAÞPðAÞ

¼
PðZAjAÞP
A PðZAjAÞ

(and likewise for P(V|ZV)). While the likelihood functions
P(A|ZA) and P(V|ZV) are nicely approximated from the
unisensory (visual-alone and auditory-alone) conditions, the
prior probabilities P(ZA,ZV) involve both sensory modalities
and cannot be obtained from unisensory conditions alone.

Estimation of the joint priors
In most models, the priors are not directly computable.
Hence, the prior distribution is parameterized and the
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parameters are tuned to fit the observed data (i.e. data to be
predicted). Our experimental paradigm makes it possible
for the joint priors to be approximated directly from the
observed data, alleviating the need for any parameter
tuning. The joint priors can be approximated by margin-
alizing the joint probabilities across all conditions, that is, all
combinations of A and V:

PðZA;ZVÞ ¼
X

A;V

PðZA;ZV jA;VÞ PðA;VÞ: ð2Þ

Given a uniform P(A,V), this leads to a normalized
marginalization of the posteriors. As this estimate requires
marginalizing over all conditions including auditory–visual
conditions, we used the data from a different set of
observers (the first half of participants) for estimating the
joint priors using the above formula, and excluded those
data from the testing process (the second half of partici-
pants). In other words, these data were used only for
calculating the priors and discarded afterwards. Thus, the

model remained predictive, not using any auditory–visual
data for making predictions about the performance in the
auditory–visual conditions.

Although it may appear that the joint prior matrix
introduces 24 free parameters in our model, it should be
emphasized that this is not the case, as these parameters are
not ‘free’. The parameters of the joint prior matrix are set
using the observed data; however, they were not tuned to
minimize the error between the model predictions and the
data. Therefore, the model has no ‘free’ parameters.

Results
The observers perform better in the auditory-alone condi-
tions (first row of Fig. 3) than in the visual-alone conditions
(first column of Fig. 3). As can be seen in Fig. 3, the human
observer’s performance is remarkably consistent with that
of the ideal observer in all of the conditions (r2¼0.92),
accounting for 600 data points [(25 (ZA,ZV) combinations at
24 conditions] with no free parameters.

Fixation point

Computer screen

Flashes

Beeps

10 ms

10 ms

70 ms

58 ms

1.5°

12°

(a)

(b)

t

Fig. 1 The spatio-temporal con¢guration of stimuli. (a) The spatial con¢guration of the stimuli. The visual stimulus was presented at 121 eccentricity
below the ¢xation point. The sounds were presented from the speakers adjacent to the monitor and at the same height as the center of the visual
stimulus. (b) The temporal pro¢le of the stimuli in one of the conditions (2 £ashes+3 beeps) is shown.The centers of the visual and auditory sequences
were aligned in all conditions.
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Only in conditions in which the visual and auditory
stimuli are identical (i.e. the conditions displayed along the
diagonal) do observers consistently indicate perceiving the
same number of events in both modalities. In conditions in
which the inconsistency between the auditory and visual
stimuli is not too large, for instance, in the 1 flash + 2 beeps
condition or 2 flashes + 1 beep condition, there is a strong
tendency to combine the two modalities, as indicated by
highly overlapping auditory and visual reports. The high
values along the diagonal in joint posterior matrices of these
conditions (not shown here) confirm that indeed the same
number of events were experienced jointly in both mod-
alities, in these conditions. The integration of the auditory–
visual percepts is achieved in these cases by a shift of the
visual percept in the direction of the auditory percept. This
occurs because the variance in the auditory-alone conditions
is lower than that of the visual-alone conditions. In other
words, because the auditory modality is more reliable, it
dominates the overall percept in these auditory–visual
conditions. This finding is consistent with previous studies
of cue combination within [3,4,16,17] or across modalities
[7–9] in all of which the discrepancy between the two cues is
small, and the percept is dominated by the cue with lower
variance (or higher reliability). The large fraction of trials in
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Fig. 3 Comparison of the performance of human observers with the ideal observer.To facilitate interpretation of the data, instead of presenting joint
posterior probabilities for each condition, only the marginalized posteriors are shown. The auditory and visual judgements of human observers are
plotted in red circles and blue squares, respectively. Each panel represents one of the conditions. The ¢rst row and ¢rst columns represent the audi-
tory-alone and visual-alone conditions, respectively.The remaining panels correspond to conditions in which auditory and visual stimuli were presented
simultaneously.The horizontal axes represent the response category (with zeros denoting absence of a stimulus and1^4 representing number of £ashes
or beeps).The vertical axes represent the probability of a perceived number of £ashes or beeps.The data point, which is enclosed by a green circle, is an
example of the sound-induced £ash illusion, showing that in a large fraction of trials, observers perceived two £asheswhen one £ashwas pairedwith two
beeps.The data point enclosed by a brown circle reveals an opposite illusion in which two £ashes are perceived as one £ash in a large fraction of trials in
the 2 £ashes+1beep condition.

ZA ZV 

A V

Fig. 2 Graphical model describing the ideal observer. In a graphical
model [15], the graph nodes represent random variables, and arrows de-
note potential conditionality.The absence of an arrow represents direct
statistical independence between the two variables.The bidirectional ar-
rowbetweenZA andZVdoes not imply a recurrent relationship; it implies
that the two causes are not necessarily independent.
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which the observers report seeing two flashes in the 1
flash + 2 beeps condition corresponds to the sound-induced
flash illusion [10].

In conditions in which the discrepancy between the
number of flashes and beeps is large (e.g. 1 flash + 4 beeps or
4 flashes + 1 beep), the overlap between the auditory and
visual percepts is significantly smaller, indicating a con-
siderably smaller degree of integration and larger degree of
segregation.

Next, we investigated the possibility that the Bayesian
model of Eq. (1) is overly powerful and capable of predicting
any data set. We shuffled the obtained human observer
posterior probabilities P(ZA,ZV|A,V) in each auditory–visual
condition leading to a new data set that was identical to the
human data in its overall content, although randomized in
order. We applied our model to this data set. The model
predictions did not match the shuffled data, even when we
did not divide the data set into two halves, and instead
computed the priors from the same set for which we
generated the predictions (r2¼�0.05). We obtain qualitatively
similar results regardless of the made-up distribution used.
This finding strongly suggests that the predictions of the
proposed ideal observer are distinctly consistent with the
human observer’s data and not with any arbitrary data set.

Discussion
Altogether, these results suggest that humans combine
auditory and visual information in an optimal fashion.
Our results extend earlier findings (e.g. [7,18]) by showing
that the optimality of the human performance is not
restricted to situations in which the discrepancy between
the two modalities is minute and the two modalities are
completely integrated. Indeed, it can be shown that many
earlier models of cue combination are special cases of the
model described here.

The ideal observer model presented here differs from
previous models of cue combination, which have employed
maximum likelihood estimation in two important ways. First,
as opposed to previous models (which assume one cause for
all signals), our model allows a distinct cause for each signal.
This is a structural difference between the present model and
all the previous models, and is the reason why the multi-
sensory paradigm in the present study is beyond the scope of
previous models. The assumption of a single cause makes
previous models unable to account for a vast portion of the
present data in which the visual and auditory information are
not integrated, that is, all the trials in which participants
reported different visual and auditory percepts. Second, the
previous models did not include any prior probability of
events, which is equivalent to assuming a uniform prior
distribution. In the present model, prior probabilities are not
assumed to be uniform. In order to examine the importance of
the priors in accounting for the data, we tested the model
using a uniform prior. The goodness of fit was considerably
reduced (r2¼0.62), indicating that in this task the priors depart
significantly from uniform distribution, and are therefore
necessary for accounting for the data.

Conclusion
The findings of this study suggest that the brain uses a
mechanism similar to Bayesian inference [19] to decide
whether, to what degree, and how (in which direction) to
integrate the signals from auditory and visual modalities,
and that the sound-induced flash illusion can be viewed as
an epiphenomenon of a statistically optimal computational
strategy.
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